02/061554 Al

WO

BNSDOCID: <WO,

TN

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Internationa! Bureau

(43) International Publication Date
8 August 2002 (08.08.2002)

000 0 0D 0 O

(10) International Publication Number

WO 02/061554 A1l

(51) International Patent Classification’:

{21) International Application Number:

(25) Filing Language:

(26) Publication Language:

(72)
(75)

GO6F 1/00

PCT/GB02/00419

(22) International Filing Date: 29 January 2002 (29.01.2002)

English

English

(30) Priority Data:

0102518.8 31 January 2001 (31.01.2001) GB
(71) Applicant (for all designated States except US):
HEWLETT-PACKARD COMPANY [US/US];, A

Delawre Corporation, 3000 Hanover Street, Palo Alto, CA
94304 (US).

Inventors; and
Inventors/Applicants (for US only): CHOOQ, Tse, Huong
[MY/GB]; 46 The Culvert, Bradley Stoke, Bristol BS32

8AB (GB). DALTON, Christopher, 1. [GB/GB]; 19
Burlington Road, Redland, Bristol BS6 6T) (GB). NOR-
MAN, Andrew, Patrick [GB/GBl; 254 Juniper Way,
Bradley Stoke, Bristol BS32 ODR (GB).

(74) Agent: LAWRENCE, Richard, Anthony; Hewlett
Packard Limited, Intellectual Property Section, Filton
Road, Stoke Gifford, Bristol BS34 8QZ (GB).

(81) Designated States (national): JP, US.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations"” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: TRUSTED OPERATING SYSTEM

120
User Intemal Compartments
MCGA: | opoo
'WEB1 BTTPD WEB1-MCGA Command-Hno uiilifics.

110 100

A typical secure Web-server configuration on Trusted Linux
with CGI-sandboxing

02061554A1_I_>

(57) Abstract: An operating system comprising a kernel 100 incorporating mandaiory access controls as a means to counter the
effects posed by application compromise. The operating system uses a technique known as "containment” to at least limit the scope
of damage when security breaches occur. In a preferred embodiment, each application supported by the operating system, is assigned
a tag or label, each tag or label being indicative of a logically protected computing environment or "compartment”, and applications
having the same tag or label belonging to the same compartment. By default, only applications running in the same compartment
can communicaie with each other. Access control rules define very narrow tightly-controlled communications paths between com-
partments.

BNSDOCID: <WO

WO 02/061554) PCT/GB02/00419

10

15

20

TRUSTED OPERATING SYSTEM

Field of the Invention
This invention relates to a trusted operating system and, in particular, to an operating system
having enhanced protection against application compromise and the exploitation of

compromised applications.

In recent years, an increasing number of services are being offered electronically over the
Internet. Such services, particularly those which are successful and therefore lucrative,
become targets for potential attackers, and it is known that a large number of Internet security

breaches occur as a result of compromise of the applications forming the electronic services.

Background to the Invention

The applications that form electronic services are in general sophisticated and contain many
lines of code which will often have one or more bugs in it, thereby hlaking the application
more vulnerable to attack. When an electronic service is offered on the Internet, it is exposed
to a large population of potential attackers capable of probing the service for vulnerabilities

and, as a result of such bugs, there have been known to be security violations.

Once an application has been compromised (for example, by a buffer overflow attack), it can

be exploited in several different ways by an attacker to breach the security of the system.

Increasingly, single machines are being used to host multiple services concurrently (e.g. ISP,
ASP, xSP service provision), and it is therefore becoming increasingly important that not only
is the security of the host platform protected from application compromise attacks, but also

that the applications are adequately protected from each other in the event of an attack.

One of the most effective ways of protecting against application compromise at the operating

" system level is by means of kernel enforced controls, because the controls implemented in the

kernel cannot be overridden or subverted from user space by any application or user. In

02061554A1_|_>

4

{

BNSDOCID: <WO.

10

15

20

25

WO 02/061554 PCT/GB02/00419
2

known systems, the controls apply to all applications irrespective of the individual application
code quality.

There are two basic requirements at the system level in order to adequately protect against .
application compromise and its effects. Firstly, the application should be protected against
attack to the greatest extent possible, exposed interfaces to the application should be as narrow
as possible and access to such interfaces should be well controlled. Secondly, the amount of

damage which a compromised application can do to the system should be limited to the

greatest possible extent.

In a known system, the above two requirements are achieved by the abstract property of
“containment”. An application is contained ifit has strict controls placed on which resources
it can access and what type of access it has, even when the application has been compromised.
Containment also protects an application from external attack and interference. Thus, the
containment property has the potential to at least mitigate many of the potential exploitative

actions of an attacker.

The most common attacks following the compromise of an application can be roughly

categorized as one of four types, as follows (although the consequences of a particular attack

may be a combination of any or all of these):

1. Misuse of privilege to gain direct access to protected system
resources. If an application is running with special privileges (e.g. an
application running as root on a standard Unix operating system), then
an attacker can attempt to use that privilege in unintended ways. For
example, the attacker could use that privilege to gain access to
protected operating resources or interfere with other applications

running on the same machine.

2. Subversion of application enforced access controls. This

type of attack gains access to legitimate resources (i.e.

02081554A1_|_>

BNSDOCID: <WO

WO 02/061554

10

15

PCT/GB02/00419
3

resources that are intended to be exposed by the application)
but in an unauthorized manner. For example, a web server
which enforces access control on its content before it serves it,
is one application susceptible to this type of attack. Since the
web server has uncontrolled direct access to the content, then

so does an attacker who gains control of the web server.

Supply of false security decision making information. This
type of attack is usually an indirect attack in which the
compromised application is usually a support service (such as
an authorization service) as opposed to the main service. The
compromised security service can then be used to supply false
or forged information, thereby enabling an attacker to gain
access to the main service. Thus, this is another way in which
an attacker can gain unauthorized access to resources

legitimately exposed by the application.

Hlegitimate use of unprotected system resources. An attacker gains access to

local resources of the machine which are not protected but nevertheless would not

normally be exposed by the application. Typically, such local resources would

then be used to launch further attacks. For example, an attacker may gain shell

20 access to the hosting system and, from there, staged attacks could then be

launched on other applications on the machine or across the network.

With containment, misuse of privilege to gain direct access to protected system resources has

much less serious consequences than without containment, because even if an attacker makes

use of an application privilege, the resources that can be accessed are bounded by what has

25 been made available in the application’s container. Similarly, in the case of unprotected

resources, using containment, access to the network from an application can be blocked or at
least very tightly controlled. With regard to the supply of false security decision making
information, containment mitigates the potential damage caused by ensuring that the only

G2061554A1_1_>

BNSDOCID: <WO

WO 02/061554 PCT/GB02/00419

10

15

20

25

4

access to support services is from legitimate clients, i.e. the application services, thereby

limiting the exposure of applications to aﬁack.

Mitigation or prevention of the second type of attack, i.e. subversion of application enforced
access controls, is usually achieved at the application design, or at least configuration level.
However, using containment, it can be arranged that access to protected resources fromalarge
untrusted application (such as a web server) must go through a smaller, more trustworthy

application.

Thus, the use of containment in an operating system effectively increases the security of the
applications and limits any damage which may be caused by an attacker in the event that an
application is compromised. Referring to Figure 1 of the drawings, there is illustrated an
exemplary architecture for multi-service hosting on an operating system with the containment
property. Containment is used in the illustrated example to ensure that applications are kept
separated from each other and critical system resources. An applicatioﬁ cannot interfere with
the processing of another application or obtain access to-its (possibly sensitive) data.

Containment is used to ensure that only the interfaces (input and output) that a particular

- application needs to function are exposed by the operating system, thereby limiting the scope

for attack on a particular application and also the amount of damage that can be done should
the application be compromised. Thus, containment helps to preserve the overall integrity of
the hosting platform.

Kemel enforced containment mechanisms in operating systems have been available for
several years, typically in operating systems designed for handling and processing classified
(military) information. Such operating systems are often called ‘Trusted Operating Systems’.

The containment property is usually achieved through a combination of Mandatory Access
controls (MAC), and Privileges. MAC protection schemes enforce a particular policy of
access control to the system resources such as files, processes and network connections. This
policy is enforced by the kernel and cannot be overridden by a user or compromised

application.

02081554A1_[_>

BNSDOCID: <WQ,

10

15

20

25

WO 02/061554 PCT/GB02/00419

5

Despite offering the attractive property of containment, trusted operating systems have not
been widely used outside of the classified information processing systems for two main
reasons. Firstly, previous attempts at adding trusted operating system features to conventional
operating systems have usuallyresulted in the underlying operating system personalities being
lost, in the sense that they no longer support standard applications or management tools, and
they can no longer be used or managed in standard ways. As such, they are much more
complicated than their standard counterparts. Secondly, previous trusted operating systems
have typically operated a form of containment which is more akin to isolation, i.e. too strong,
and as such has been found to be limited in scope in terms of its ability to usefully and
effectively secure [existing] applications without substantial and often expensive integration
efforts.

We have now devised an arrangement which seeks to overcome the problems outlined above,
and provides a trusted operating system having a containment property which can be usefully
used to effectively secure a large number of existing applications without application

modification.

Summary of the Invention

In accordance with a first aspect of the present invention, there is provided an operating
system for supporting a plurality of applications, wherein at least some of said applications
are provided with a label or tag, each label or tag being indicative of a logically protected
computing environment or “compartment”, each application having the same label or tag
belonging to the same compartment, the operating system further comprising means for
defining one or more communication paths between said compartments, and means for
preventing communication between compartments where a communication path there

between is not defined.

In accordance with a second aspect of the present invention, there is provided an operating
system for supporting a plurality of épplicationg, the operating system further comprising a
plurality of access control rules, which may beneficially be added from user space and
enforced by means provided in the kernel of the operating system, the access control rules

defining the only communication interfaces between selected applications (whether local to

02061554A1_I_>

BNSDOCID: <WOQO,

WO 02/061554 PCT/GB02/00419

10

15

20

25

or remote from said operating system).

This, in the first and second aspects of the present invention, the property of containment is
provided by mandatory protection of processes, files and network resources, with the principal
concept being based on the compartment, which is a semi-isolated portion of the system.
Services and applications on the system are run within separate compartments. Beneficially,
within each compartment is a restricted subset of the host file system, and communication
interfaces into and out of each compartment are well-defined, narrow and tightly controlled.
Applications within each compartment only have direcf access to the resources in that
compartment, namely the restricted file system and other applications within that
compartment. Access to other resources, whether local or remote, is provided only via the

well-controlled communication interfaces.

Simple mandatory access controls and application or process labeling are beneficially used
to realize the concept of a compartment. In a preferred embodiment, each process (or thread)
is given a label, and processes having the same labels belong to the same compartment. The
system preferably further comprises means for performing mandatory security checks to
ensure that processes from one compartment cannot interfere with processes from another
compartment. The access controls can be made very simple, because labels either match or

they do not.

In a preferred embodiment of the present invention, filesystem protection is also mandatory.
Unlike traditional trusted operating systems, the preferred embodiment of the first aspect of
the invention does not use labels to directly control access to the filesystem. Instead, the file
systems of the first and second aspects of the present invention are preferably, at least partly,
divided into sections, each section being a non-overlapping restricted subset (i.e. a chroot) of
the main filesystem and associated with a respective compartment. Applications running in
each compartment only have access to the associated section of the filesystem. The operating
system of the first and/or second aspects of the present invention is preferably provided with
means for preventing a process from transitioning to root from within its compartment as
described below with reference to the fourth aspect of the present invention, such that the

chroot cannot be escaped. The system may also include means for making selected files

02061554A1_1_>

BNSDOCID: <WO.

WO 02/061554 PCT/GB02/00419

10

15

20

25

within a chroot immutable.

The flexible but controlled communication paths between compartments and network
resources are providéd throﬁgh narrow, tightly—cdntrolled communication interfaces which
are preferably govermned by one or more rules which may be defined and added from user
space by a security administrator or the like, preferably on a per-compartment basis. Such
communication rules eliminate the need for trusted proxies to allow communication between

compartments and/or network resources.

The containment properties provided by the first and/or second aspects of the present
invention maybe achieved by kernel level enforcement means, user-level enforcement means,
or a combination of the two. In a preferred embodiment of the first and/or second aspects of
the present invention, the rules used to specify the allowed access between one compartment
and other compartments or hosts, are enforced by means in thekernel ofthe operating system,
thereby eliminating the need for user space interposition (such as is needed for existing proxy
solutions). Kernel enforced compartment access control rules allow controlled and flexible
communication paths between compartments in the compartmentalized operating system of

the first aspect of the present invention without requiring application modification.
The rules are beneficially in the form:
source -> destination method mfattr] [netdev n]

where:
source/destination is one of:

COMPARTMENT (a named compartment)

HOST (possibly a fixed Ipv4 address)

NETWORK (possibly an Ipv4 subnet)

m: supported kernel mechanism, e.g. tcp (transmission control protocol),
udp (user-datagram protocol), msg (message queues), shm (shared-
memory), etc.

attr: attributes further qualifying the method m

______02061554A1_{_>

BNSDOCID: <WO,

WO 02/061554 PCT/GB02/00419

8

n: a named network interface if applicable, e.g. ethO

Wildcards can also be used in specifying a rule. The following example rule allows all hosts
to access the web server compartment using TCP on port 80 only: A

HOST* -> COMPARTMENT web METHOD tcp PORT 80

5 The following example rule is very similar, but restricts access to the web server compartment

10

15

20

25

to hosts that have a route to the ethO network interface on an exemplary embodiment of the

system:
HOST* -> COMPARTMENT web METHOD tcp PORT 80 NETDEV ethO

Means are preferably provided for adding, deleting and/or listing the access control rules.
defined for the operating system, beneficially by an authorized system administrator. Means
may also be provided for adding reverse TCP rules to enable two-way communication to take

place between selected compartments and/or resources.

The rules are beneficially stored in a kernel-level database, and preferably added from user
space. The kemel-level database is beneficially made up of two hash tables, one of the tables
being keyed on the rule source address details and the other being keyed on the rule
destination address details. Before a system call/ISR (Interrupt Service Routine) is permitted
to proceed, the system is arranged to check the database to determine whether or not the rules
define the appropriate communication path. The preferred structure of the kernel-level
database enables efficient lookup of kernel enforced compartment access control rules because
when the security check takes place, the system knows whether the required rule should match
the source address details or the destinatioﬁ address details, and can therefore select the
appropriate hash table, allowing a O(1) rate of rule lookup. If the necessary rule defining the

required communication path is not found, the system call will fail.

Thus, in accordance with a third aspect of the present invention, there is provided an operating

system for supporting a plurality of applications, said operating system comprising a database

02061554A1_I_>

BNSDOCID: <WO,

10

15

20

25

WO 02/061554 PCT/GB02/00419

S

in which is stored a plurality of rules defining permitted communication paths (i.e. source and
destination) between said applications, said rules being stored in the form of at least two
encoded tables, the first table being keyed on the rule source details and the second table being
keyed on the rule destination details, the system further comprising means, in response to a
system call, for checking at least one of said tables for the presence of a rule defining the
required communication path and for permitting said system call to proceed only in the event

that said required communication path is defined.
Said encoded tables preferably include at least one hash table.

Often, on gateway-type systems (i.e. hosts with dual-interfaces connected to both internal and
external networks), it is desirable to a) constrain the running server-processes to use only a
subset of the available network interfaces, b)explicitly specify which remote-hosts are
accessible and which are not, and c) have such restrictions apply on a per-process/service

basis on the same gateway system.

A gateway system may be ph}:fsically attached to several internal sub-networks, so it is
essential that a system-administrator classifies which server-processes may be allowed to
access which network-interface so that if a server-process is compromised from a remote
source, it cannot be used to launch subsequent attacks on potentially vulnerable back-end

hosts via another network-interface.

Traditionally, firewalls have been used to restrict access between hosts on a per-IP-address
and/or IP-port level. However, such firewalls are not fine-grained enough of gateway systems
hosting multiple services, primarily because they cannot distinguish between different server
processes. In addition, in order to specify different sets of restrictions, separate gateway

systems with separate sets of firewall rules are required.

Our first co-pending International Application defines an arrangement which seeks to
overcome the problems outlined above and which provides a gateway system having a dual
interface connected to both internal and external networks for hosting a plurality of services

running processes and/or threads, the system comprising means for providing at least some

_____ 02061558A1_1_>

BNSDOCID: <WO,

10

15

20

25

WO 02/061554 PCT/GB02/00419

10

of said running processes and/or threads with a tag or label indicative of a compartment,
processes/threads having the same tag or label belonging to the same compartment, the system
further comprising means for defining specific communication paths and/or permitted
interface connections between said compartments and local and/or remote hosts or networks,
and means for permitting communication between a compartment and a host or network only

in the event that a communication path or interface connection there between is defined.

Thus, in the invention of our first co-pending International Application, access control checks
are placed, preferably in the kerhcl/operating system of the gateway system. Such access
control checks preferably consult a rule-table which specifies which classes of processes are
allowed to access which subnets/hosts. Restrictions can be specified on a per-service (or per-
process/thread) level. This means that the view of the back-end network is variable on a
single gateway host. Thus, for example, if the gateway were to host two types of services
each requiring access to two different back-end hosts, a firewall according to the prior art
would have to specify that the gateway host could access both of these back-end hosts,
wheréas with the invention of our first co-pending International Application, it is possible to
specify permitted communication paths at a finer level, i.e. which services are permitted to
access which hosts. This increases security somewhat because it greatly reduces the risk of .

a service accessing a host which it was not originally intended to access.

In a preferred embodiment of the present invention, the access-control checks are
implemented in the kernel/operating system of the gateway system, such that they cannot be

bypassed by user-space processes.

Thus in a first exemplary embodiment of the invention of our first co-pending International
Application, the kernel of the gateway system is provided with means for attaching a tag or
label to each running process/thread, the tags/labels indicating notionally which compartment
a process belongs to. Such tags may be inherited from a parent process which forks a child.
Thus, a service comprising a group of forked children cooperating to share the workload, such
as a group of slave Web-server processes, would possess the same tags and be placed in the

same ‘compartment’. The system administrator may specify rules, for example in the form:

02061554A1_1_>

BNSDOCID: <WO.

WO 02/061554 PCT/GB02/00419

10

15

20

25

11

Compartment X -> Host Y [using Network Interface Z) or
Compartment X -> Subnet Y [using Network Interface Z]

which allow processes in 2 named compartment X to access either a host or a subnet Y,
optionally restricted by using only the network-interface named Z. In a preferred
embodiment, such rules are stored in a secure configuration file on the gateway system and
loaded into the kernel/operating system at system startup so that the services which are then
started can operate. When services are started, their start-up sequence would specify which
compartment they would initially be placed in. In this embodiment, the rules are consulted
each time a packet is to be sent from or delivered to Compartment X by placing extra security

checks, preferably in the kernel’s protocol stack.

In a second exemplary embodiment of the invention of our first co-pending International
Application, a separate routing-table per-compartment is provided. As in the first
embodiment described above, each process possesses a tag or label inherited from its parent.
Certain named processes start with a designated tag configured by a system administrator.
Instead of specifying rules, as described above with reference to the first exemplary
embodiment, a set of configuration files is provided (one for each compartment) which the
configure the respective compartment’s routing-table by inserting the desired routine-table
entries. Because the gateway system could contain an un-named number of compartments,

each compartment’s routing-table is preferably empty by default (i.e. no entries).

The use of routing-tables instead of explicit rules can be achieved because the lack of a
matching route is taken to mean that the remote host which is being attempted to be reached
is reported to be unreachable. Routes which do match signify acceptance of the attempt to
access that remote host. As with the rules in the first exemplary embodiment described above,
routing-entries can be specified on a per-hosf (IP-address) or a per-subnet basis. All that is
required is to specify such routing-entries on a per-compartment basis in order to achieve the

same functionality as in the first exemplary embodiment.

As explained above, attacks against running server-processes/daemons (e.g. buffer-overflow,

stack-smashing) can lead to a situation where a remote attacker illegally acquires

02061554A1_|_>

BNSDOCID: <WQO,

WO 02/061554 ' PCT/GB02/00419

10

15

20

25

14

a setuid-root program. In addition, no changes to the original source code of the protected

process are required, arbitrary binaries can be run with the assurance that they will not drop

back to root.

Trusted Operating Systems typically perform labeling of individual network adapters in order
to help determine the required sensitivity label to be assigned to an incoming network packet.
Sometimes, other software systems, such as ﬁrev?alls, perform interface labelling (or
colouring as it is sometimes called) to determine which interfaces are to be marked potentially
“hostile” or non-hostile. This corresponds to the view of a corporate network as being

trusted/secure internally and untrusted/insecure for external Internet links (see Figure 15 of
the drawings). '

For network adapters (NICs) that remain static during the operation of a computer system, the
labelling can be performed during systerh startup. However, there are classes of NIC which
can be dynamically activated on a system, such as “soft” adapters for handling PPP links or
any other network—device abstraction (e.g. VLANs, VPNs). Examples of such dynamic

adapters include:

* PPP links, e.g. modem connection to an ISP. Typically, a soft adapter is created

representing the PPP connection to the ISP.

* Virtual LANs (VLANS) - servers can host software-services operating in a private virtual
network using VLANs. Such VLANS can be set up dynamically (on demand, say) so the
server hosting such services has to be able to correctly label these interfaces if using a

Trusted Operating System or a derivative.

The largely static nature of the configuration shown in Figure 15 of the drawings means that
there is little need to handle a new adapter. If a system-administrator wishes to add a new
adapter to the dual-homed host 700, he/she would typically bring down the system, physically
add the adapter and configure the system to recognize the new adapter properly. However,
this process is not suitable in the case where the system which requires interface labelling has

the kind of dynamic interfaces mentioned above.

02061554A1_1_>

BNSDOCID: <WO

WO 02/061554 PCT/GB02/00419

10

15

20

25

15

Tf no label is applied to the adapter, incoming packets on the adapter would not be assigned
correct labels which might violate the security of the system in question. Further, outgoing
packets (which presumably have a label correctly assigned to them) cannot be matched
correctly against the adapter on which the packet is to be transmitted, therefore violating the

security of the system in question.

Our second co-pending International Application defines an arrangement which seeks to
overcome the problems outlined above and which provides an operating system comprising
means for dynamically assigning a label to a newly-installed adapter substantially upon
activation thereof, the label depending upon the attributes of said adapter, and means for

removing said label when said adapter is de-activated.

Thus, when a newly-installed adapter in the operating system is first activated, a label is

reliably assigned thereto prior to reception of incoming packets, thereby ensuring that no

. unlabeled packets are created and passed on to the network protocol stack. Because dynamic .

adapters are catered for in the operating system of the invention of our second co-pending
International Application, new areas of functionality for such labeled systems are opened up,
e.g. as a router, mobile device. Further, the label assigned to the adapter can be a function of
the run-time properties of the newly-activated adapter. For example, it may be desirable to
distinguish between different PPP connections to various ISP’s. This cannot be done by
assigning a label to the adapter-name (e.g. adapter “ppp0" is to be assigned label LO) because
the adapter names are created dynamically and the actual properties of the adapter may vary.
By choosing a label appropriate to the adapter, it can be ensured that any security checks
based on the label function properly. This is especially important with respect to Trusted
Operating Systems (in particular, as defined with reference to the first and second aspects of
the present invention) which also apply labels to other system objects, such as processes,
network connections, files, pipes, etc., in the sense that the label applied to the adapter has to

be correct with respect to the other labels already present on the system.

The kernel/operating system typically has software-routines which are invoked when a new
adapter is activated. In on exemplary embodiment of the invention of our second co-pending

International Application, such routines are modified to also assign a label depending on the

02061554A1_1_>

BNSDOCID: <WO

10

15

20

25

WO 02/061554 PCT/GB02/00419

16

attributes of the newly-formed adapter, e.g. by consulting a ruleset or configuration table.
Similarly, there are routines which are invoked when adapters are de-activated, which are

modified to remove the label previously assigned.

Referring back to the first and second aspects of the present invention, there is defined an
operating system which augments each process and network interface with a tag indicating
the compartment to which it belongs. In an exemplary embodiment, means provided in the
kernel consult a rulebase whenever a process wishes to communicate with another process (in
thé Linux operating system, by using any of the standard UNIX inter-process communication
mechanisms). The communication succeeds only if there is a matching rule in the rulebase.
In the preferred embodiment, the rulebase resides in the kemel, but as explained above, to be
more practical, it is preferably able to be initialized and dynamically maintained and queried

by an administrative program, preferably in user-space.

Thus, in accordance with a fifth aspect of the present invention, there is provided an operating
system comprising a kernel including means for storing a rulebase consisting of one or more
rules defining permitted communication paths between system objects, and user-operable
means for adding, deleting and/or listing such rules.

Thus, in the operating system of the fifth aspect of the present invention, it is possible to
perform not just access control over TCP and UDP packets, but also other forms of inter-
process communication that exist on the operating system (in a Linux system, these would

include Raw IP pabkets, SysV messages, SysV shared memory and SysV semaphores).

In an exemplary embodiment of the fifth aspect of the invention, the user space program
needs to be able to send and receive data from the kernel in order to change and list the entries
in its rulebase. In a preferred embodiment, this is implemented by the inclusion in the
operating system of a kernel device driver which provides two entry points. The first entry
point is for the ‘ioctl’ system call (ioctl is traditionally used to send small amounts of data or

commands to a device. The first entry point is arranged to be used for three operations.

Firstly, it can be used to specify a complete rule and add it to a rulebase. Secondly, the same

data can be used to delete that rule. Thirdly, as an optimization, a rule can be deleted by its

02061554A1_|_>

BNSDOCID: <WO

10

15

20

25

WO 02/061554 PCT/GB02/00419

17

‘reference’, which in one exemplary embodiment of the invention, is a 64-bit tag which is

maintained by the kemel.

The second entry point is for a “/proc” entry. When the user space program opens this entry,
it can read a list of rules generated by the kernel. The reason for this second entry point is that
it is a more efficient mechanism by which to read the list of rules than via an ioctl command,
and can be more easily read by other user processes which do not have to be specially written

to recognize and handle the specific ‘ioctl’ commands for the kernel module.
Brief Description of the Drawings

FIGURE 1 is a schematic illustration of an exemplary architecture for multi-
service hosting on an operating system with the containment property;

FIGURE 2 is a schematic illustration of an architecture of a trusted Linux host
operating system according to an exemplary embodiment of the present invention;

FIGURE 3 illustrates an exemplary modified data type used in the operating
system illustrated in Figure 2;

FIGURE 4 illustrates the major networking data types in Linux IP-networking;

FIGURE 5 illustrates the propagation of struct csecinfo data-members for IP-
networking;

FIGURE 6 illustrates schematically three exemplary approaches to building
containment into a Linux kernel; »

FIGURE 7 illustrates schematically the effect of the rule;
HOST* -> COMPARTMENT x METHOD TCP PORT 80;

FIGURE 8 illustrates schematically the spectrum of options available for the
construction of a hybrid containment prototype operating system;

FIGURE 9 illustrates schematically the desirability of updating replicated kernel
state in synchrony;

FIGURE 10 illustrates schematically an exemplary configuration of Apache and
two Tomcat Java Vms;

FIGURE 11 illustrates schematically the layered chroot-ed environments in the
Trusted Linux illustrated in Figure 2;

02061554A1_1_>

BNSDOCID: <WO

10

15

20

25

WO 02/061554 PCT/GB02/00419
18

FIGURE 12 illustrates schematically the process of efficient lookup of kernel
enforced compartment access control rules;

FIGURE 13 illustrates schematically an exemplary embodiment of a trusted

- gateway system according to an aspect of the present invention; ' ‘

FIGURE 14 illustrates schematically the operation of an operating system
according to an exemplary embodiment of an aspect of the present invention; and

FIGURE 15 illustrates schematically an exemplary embodiment of an operating
system according to the prior art.

Detailed Description of the Invention

In summary, similar to the traditional trusted operating system approach, the property of
containment is achieved in the operating system in an exemplary embodiment of the present
invention by means of kernel level mandatory protection of processes, files and network
- resources. However, the mandatory controls used in the operating system of the present
invention are somewhat different to those found on traditional trusted operating systems and,
as such, they are intended to at least reduce some of the application integration and

management problems associated with traditional trusted operating systems.

The key concept of a trusted operating system according to the invention is the
‘compartment’, and various services and applications on a system are run within separate
compartments. Relatively simple mandatory access controls and process labeling are used to
create the concept of a compartment. In the following exemplary embodiment of a trusted
operating system according to the invention, each process within the system is allocated a
label, and processes having the same label belong to the same compartment. Kernel level
mandatory checks are enforced to ensure that prdcesses from one compartment cannot
interfere with processes from another compartment. The mandatory access controls are
relatively simple in the sense that labels either match or they do not. Further, there is no
hierarchical ordering of labels within the system, as there is in some known trusted operating

systems.

Unlike traditional trusted operating systems, in the present invention, labels are not used to

02061554A1_|_>

BNSDOCID: <WO

10

15

20

25

WO 02/061554 PCT/GB02/00419

19

directly control access to the main filesystem. Instead, filesystem protection is achieved by
associating a different section of the main filesystem with each compartment. Each such
section of the file system is a chroot of the main filesystem, and processes running within any
corﬁpartrhent onlfy have access to the section of filesystem which is associated with that
compartment. Importantly, via kerel controls, the ability of a process to transition to root
from within a compartment is removed so that the chroot cannot be escaped. An exemplary
embodiment of the present invention also provides the ability to make at least selected files

within a chroot immutable.

Flexible communication paths between compartments and network resources are provided via
narrow, kernel level controlled interfaces to TCP/UDP plus most IPC mechanisms. Access
to these communication interfaces is governed by rules specified by the security administrator
on a ‘per compartment’ basis. Thus, unlike in traditional trusted operating systerns, it is not
necessary to override the mandatory access controls with privilege or resort to the use of user

level trusted proxies to allow communication between compartments and network resources.

The present invention thus provides a trusted operating systems which offers containment, but
also has enough flexibility to make application integration relatively straightforward, thereby
reducing the management overhead and the inconvenience of deploying and running a trusted

operating system.

The architecture and implementation of a specific exemplary embodiment of the present
invention will now be described. In the following description, numerous specific details are
set forth in order to provide a thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art, that the invention may be practiced without
limitation to these specific details. In other instances, well known methods and structures

have not been described in detail so as to avoid unnecessarily obscuring the present invention.

In the following description, a trusted Linux operating system is described in detail, which
system is realized by modification to the base Linux kernel to support containment of user-
level services, such as HTTP-servers. However, it will be apparent to a person skilled in the

art that the principles of the present invention could be applied to other types of operating

02061554A1_|_>

. WO 02/061554 PCT/GB02/00419

20

system to achieve the same or similar effects.

The modifications made to a Linux operating system to realize a trusted operating system

according to an exemplary embodiment of the invention, can be broadly categorized as

follows:
5 1. " Kernel modifications in the areas of:
* TCP/IP networking
* Routing-tables and routing-caches
* System V IPC - Message queues, shared memory and
semaphores
10 * Processes and Threads
* UID handling
2. Kemel configuration interfaces in the form of:
* Dynamically loadable kemnel modules
* Command-line utilities to communicate with those
15 modules
3. User-level scripts to administer/configure individual compartments:
* Scripts to starUstop compartments

Referring to Figure 2 of the drawings, there is illustrated an architecture of a trusted Linux
host operating system according to an exemplary embodiment of the invention, including the
20 major areas of change to the base Linux kernel and the addition of a series of compartments

in user-space implementing Web-servers capable of executing CGl-binaries in configurable

BNSDOCID: <WQO. 02061554A1_I_>

BNSDOCID: <WO

WO 02/061554 PCT/GB02/00419

10

15

20

25

21

chroot jails.

Thus, with reference to Figure 2, a base Linux kernel 100 generally comprises TCP/TP
Networking means 102, UNIX domain sockets 104, Sys V IPC means 106 and other
subsystems 108. The trusted Linux operating system additionally comprises kernel extensions
110 in the form of a security module 112, a device configuration module 114, arule database
116 and kernel modules 118. As shown, at least some of the Linux kernel subsystems 102,
104, 106, 108 have been modified to make call outs to the kernel level security module 112.

The security module 112 makes access control decisions and is responsible for enforcing the |

concept of a compartment, thereby providing containment.

The security module 112 additionally consults the rule database 116 whenmaking a decision.
The rule database 116 contains information about allowable communication paths between
compartments, thereby providing narrow, well-controlled interfaces into and out of a

compartment (see also Figure 12 of the drawings).

Figure 2 of the drawings also illustrates how the kernel extensions 110 are administered from

. user space 120 via a series of ioctl commands. Such ioctl commands take two forms: some

to manipulate the rule table and others to run processes in particular compartments and

configure network interfaces.

User space services, such as the web servers shown in Figure 2, are run unmodified on the
platform, but have a compartment label associated with them via the command line interface
to the security extensions. The security module 112 is then responsible for applying the
mandatory access controls to the user space services based on their applied compartment
label. It will be appreciated, therefore, that the user space services can thus be contained

without having to modify those services.

The three major components of the system architecture described with reference to F igure 2
of the drawings are a) the command line utilities required to configure and administer the
principal aspects of the security extensions, such as the communication rules and process

compartment labels; b) the loadable modules that implement this functionality within the

02061554A1 | >

BNSDOCID: <WO.

10

15

20

WO 02/061554 . PCT/GB02/00419

22

kernel; and c) the kernel modifications made to take advantage of this functionality. These

three major components will now be described in more detail, as follows.

a) Command-line Utilities

‘CACC’ is a command line utility to add, delete and list rules via /dev/cacc and /proc/cacc
interfaces provided by a cac kernel-loadable module (not shown). Rules can either be entered
on the command line, or can be read from a text-file.

In this exemplary embodiment of the invention, rules take the following format:

<rule>::=<source>[<port>]-><destination>[<port>]<method list><netdev>

where:

<identifier> = (<compartment> | <host>| <net>) [<port>]
<compartment> = ‘COMPARTMENT’ <comp_name>

<host> = ‘HOST’ <host_name>

<net> == ‘NET’ <ip_addr> <netmask>

<net> == ‘NET’ <ip_addr> / <bits>

<comp_name> = A valid name of a compartment

<host_name> == A known hostname or IP address

<ijp_addr> = An IP address in the form a.b.c.d

<netmask> == A valid netmask, in the form a.b.c.d

<bits> == The number of leftmost bits in the netmask.... 0 thru 31
<method_list> == A list of comma-separated methods (In this exemplary embodiment,

methods supported are: TCP (Transmission Control Protocol), UDP
(User Datagram Protocol), and ALL.

To add a rule, the user can enter ‘cacc -a <filename>’(to read a rule from a text file, where

<filename> is a file containing rules in the format described above), or ‘cacc -a rule’ (to enter

_______02061554A1_I_>

BNSDOCID: <WO

10

15

20

WO 02/061554 PCT/GB02/00419

23

a rule on the command line).

To delete a rule, the user can enter ‘cacc - d <filename>’, or cacc -d rule, or cacc -d ref (in this

" form, a rule can be deleted solely by its reference number which is output by listing the rules

using the command cacc -1, which outputs or lists the rules in a standard format with the rule

reference being output as a comment at the end of each rule.

By default, ‘cacc’ expects to find the compartment mapping file ‘cmap.txt’ and the method
mapping file ‘mmap.txt’ in the current working directory. This can be overridden, however,
by setting the UNIX environment variables CACC_CMAP and CACC_MMAP to where the
files actually reside, in this exemplary embodiment of the invention.

Any syntax or semantic errors detected by cacc will cause an error report and the command
will immediately finish, and no rules will be added or deleted. If a text file is being used to

enter the rules, the line number of the line in error will be found in the error message.

Another command-line utility provided by this exemplary embodiment of the present
invention is known as ‘lcu’, which provides an interface to an LNS kernel-module (not
shown). Its most important function is to provide various administration-scripts with the
ability to spawn processes in a given compartment and to set the compartment number of

interfaces. Examples of its usage are:

1. ‘lcu setdev ethO OxXFFFF0000'
Sets the compartment number of the ethO network interface to 0OxFFFF0000

2. ‘Icu setprc 0x2 -cap_mknod bash’
Switches to compartment 0x2, removes the cap_mknod capability and invokes
bash

b) Kernel Modules

This exemplary embodiment of the present invention employs two kernel modules to

02061554A1_t_>

BNSDOCID: <WOQ.

5

10

15

20

25

WO 02/061554

PCT/GB02/00419
24

implement custom ioctl()s that enable the insertion/deletion of rules and other functions such
as labeling of network interfaces. However, it is envisaged that the two modules could be
merged and/or replaced with custom system-calls. In this embodiment of the present

invention, the two kernel modules are named /ns and cac. |
The Ins module implements various interfaces via custom ioctl(s to enable:

A calling process to switch compartments.

2. Individual network interfaces to be assigned a compartment number.
Utility functions, such as process listing with compartment numbers and the
logging of activity to kernel-level security checks.

The main client of this module is the lcu command-line utility described above.

The cac module implements an interface to add/delete rules in the kemel via a custom ioctl().
It performs the translation between higher-level simplified rules into primitive forms more
readily understood by kemel lookup routines. This module is called by the cacc and cgicacc

user-level utilities to manipulate rules within the kernel.

c) Kernel Modifications

In this exemplary embodiment of the present invention, mo difications have been made to the
standard Linux kemel sources so as to introduce a tag on various data types and for the
addition of access-control checks made around such tagged data types. Each tagged data type
contains an additional struct csecinfo data-member which is used to hold a compartment
number (as shown in Figure 3 of the drawings). It is envisaged that the tagged data types
could be extended to hold other security atiributes. In general, the addition of this data-
member is usually performed at the very end of a data-structure to avoid issues arising relating
to the common practice casting pointers between two or more differently named structures

which begin with common entries.

The net effect of tagging individual kernel resources is to very simply implement a

02061554A1_| _>

BNSDOCID: <WO

10

15

20

25

WO 02/061554 PCT/GB02/00419

25

compartmented system where processes and the data they generate/consume are isolated from
one another. Such isolation is not intended to be strict in the sense that many covert channels
exist (see discussion about processes below). The isolation is simply intended to protect

obvious forms of conflict and/or interaction between logically different groups of processes.

In this exemplary embodiment of the present invention, there exists a single function
cnet_chk_attr() that implements a yes/no security check for the subsystems which are
protected in the kernel. Calls to this function are made at the appropriate points in the kernel
sources to implement the compartmented behavior required. This function is predicated on
the subsystem concerned and may implement slightly different defaults or rule-conventions
depending on the subsystem of the operation being queried at that time. For example, most
subsystems implement a simple partitioning where only objects/resources having exactly the
same compartment number result in a positive return value.. However, in certain cases, the
use of a no-privilege compartment 0 and/or a wildcard compartment -1L can be used, €.g.
compartment 0 as a default ‘sandbox’ for unclassified resources/services; a wildcard
compartment for supervisory purposes, like listing all processes on the subsystem prior to
shutting down. |

Referring to Figure 4 of the drawings, standard Linux IP networking will first be explained.
Each process or thread is represented by a task_struct variable in the kernel. A process may
create sockets in the AF_INET domain for network communication over TCP/UDP. These

are represented by épair of struct socket and struct sock variables, also in the kernel.

The struct sock data type contains, among other things, queues for incoming packets
represented by struct sk_buffs. It may also hold queues for pre-allocated sk_buffs for packet
transmission. Each sk_buff represents an IP packet and/or fragment traveling up/down the
TP stack. They either originate at a struct sock (or, more specifically, from its internally pre-
allocated send-queue) and travel downwards for transmission, or they originate from a
network driver and travel upwards from the bottom of the stack starting from a struct
net_device which represents anetwork interface. When traveling downwards, they effectively
terminate at a struct net_device. When travelipg upwards, they are usually delivered to a
waiting struct sock (actually, its pending queue).

_______02061554A1_I_>

-

BNSDOCID: <WO,

10

15

20

25

WO 02/061554 PCT/GB02/00419

26

Struct sock variables are created essentially indirectly by the socket(-call (in fact, there are
private per-protocol sockets owned by various parts of the stack within the kernel itself that

cannot be traced to a running process), and can usually be traced to an owning user-process,

i.. atask_struct. There exists a struct net_device variable for each configured interface on
the system, including the loopback interface. Locathost and loopback communications appear
not to travel via a fastpath across the stack for speed, instead they travel up and down the
stack as would be expected for remote host communications. At various points in the stack,

calls are made to registered netfilter-modules for the purposes of packet interception.

By adding an additional csecinfo data-member to the most commonlyused data typesin Linux
1P nétworldng, it becomes possible to trace ownership and hence read/write dataflows of

individual IP packets for all running processes on the system, including kemel-generated

responses.

Thus, in order to facilitate this exemplary embodiment of the present invention, at least the
major networking data types used in standard Linux TP networking have been modified. In
fact, most of the data-structures modified to realize this embodiment of the invention are
related to networking and occur in the networking stack and socket-support routines. The
tagged network data structures serve to implement a partitioned IP stack. In this exemplary
embodiment of the invention, the following data structures have been modified to include a
struct csecinfo:

1. struct task_struct - processes (and threads)

2. struct socket - abstract socket representation

3. struct sock - domain-specific socket -

4. struct sk_buff - TP packets or messages between sockets
5. struct net_device - network interfaces, e.g. eth0, lo, etc.

During set-up, once the major data types were tagged, the entire IP-stack was checked for
points at which these data types were used to introduce newly initialized variables into the
kernel. Once such points had been identified, code was inserted to ensure that the inheritance

of the csecinfo structure was carried out. The manner in which the csecinfo structure is

) 02061554A1_|_>

BNSDOCID: <WO

10

15

20

25

WO 02/061554 PCT/GB02/00419

27

propagated throughout the IP networking stack will now be described in more detail.

There are two named sources of struct csecinfo data members, namely per-process
task_structs and per-interface net_devices. Each process inherits its csecinfo from its p’arént,
unless explicitly modified by a privileged ioctl(). In this exemplary embodiment of the
present invention, the init-process is assigned a compartment number of 0. Thus, every
process spawned by init during system startup will inherit this compartment number, unless
explicitly set otherwise. During system startup, init-scripts are typically called to explicitly
set the compartment numbers for each defined network interface. Figure 5 of the drawings

illustrates how csecinfo data-members are propagated for the most common cases.

All other data structures inherit their csecinfo structures from either a task_struct or a
net_device. For example, if a process creates a socket, a struct socket and/or struct sock may
be created which inherit the current csecinfo from the calling process. Subsequent packets
generated by calling write() on a socket generate sk_buffs which inherit their csecinfo from
the originating socket.

Incoming IP packets are stamped with the compartment number of the network interface on
which it arrived, so sk_buffs traveling up the stack inherit their csecinfo structure from the
originating net_device. Prior to being delivered to a socket, each sk_buff’s csecinfo structure

is checked against that of the prospective socket.

It will be appreciated that special care must be taken in the case of non-remote networking,
i.e. in the case where a connection is made between compartments X and Y through any one

of the number of network interfaces which is allowed by a rule of the form:
COMPARTMENT X -> COMPARTMENT Y METHOD tcp
Because the security checks occur twice for IP networking, i.e. once on output and once on

input, it is necessary to provide means for preventing the system from looking for the

existence of these rules instead:

02061554A1_|_>

BNSDOCID: <WO,

5

10

15

20

25

WO 02/061554 PCT/GB02/00419

28

COMPARTMENT X ->HOST a.b.c.d METHOD tcp (for output)
HOST ab.c.d > COMPARTMENT Y METHOD tcp (for input)

which, although valid, may not be used in preference to the rule specifying source and
destination compartments directly. To cater for this, in this exemplary embodiment of the
invention, packets sent to the loopback device retain their original compartment numbers and
are simply ‘reflected’ off it for eventual delivery. Note that, in this case, the security check
occurs on delivery and not transmission. Upon receipt of an incoming local packet on the
loopback interface, the system is set up to avoid overwriting the compartment number of the
packet with that of the network interface and allow it to travel up the stack for the eventual
check on delivery. Once there, the system performs a check for a rule of the form:

COMPARTMENT X -> COMPARTMENT Y tcp
instead of
HOST ab.c.d -=> COMPARTMENT Y METHOD tcp

because of the presence on the sk_buff of a compartment number that is not of a form
normally allocated to network interfaces (network interfaces in this exemplary embodiment
of the present invention, as a general rule, are allocated compartment numbers in the range
0xFFFF0000 and upwards and can therefore be distinguished from those allocated for running

services).

Because the rules are unidirectional, the TCP layer has to dynamically insert a rule to handle
the reverse data flow once a TCP connection has been set up, either as a result of a connect(
or accept(). This happens automatically in this exemplary embodiment of the invention and
the rules are then deleted once the TCP connection is closed. Special handling occurs when
a struct tcp_openreq is created to represent the state of a pending connection request, as
opposed to one that has been fully set up in the form of a struct sock. A reference to the
reverse-rule created is stored with the pending request and is also deleted if the connection

request times out or fails for some other reason.

02081554A1_1_>

BNSDOCID: <WO.

10

15

20

WO 02/061354 PCT/GB02/00419

29

An example of this would be when a connection is made from compartment 2 to aremote host

10.1.1.1. The original rule allowing such an operation might have looked like this:
COMPARTMENT 2 -> NET 10.1.1.0/255.255.255.0 METHOD tcp

As a result, the reverse rule would be something like this (abc/xyz being the specific port-

numbers used):
HOST 10.1.1.1 PORT abc -> COMPARTMENT 2 PORT xyz METHOD tcp

Tn order to support per-compartment routing-tables, each routing table entry is tagged with a
csecinfo structure. The various modified data structures in this exemplary embodiment ofthe

invention are:

1. struct rt_key

2. struct rtable

3. struct fib_rule
4. struct fib_node

Inserting a route using the route-command causes a routing-table entry to be inserted with the
csecinfo structure inherited from the calling context of the user-process, i.e. if a user invokes
the route-command from a shell in compartment N, the route added is tagged with N as the
compartment number. Attempts to view routing-table information (usually by inspecting
/proc/met/route and /proc/net/rt_cache) are predicated on the value of the csecinfo structure

of the calling user-process.

The major routines used to determine input and output routes which a sk_buff should take are
ip_route_output() and ip_route_input(). In this exemplary embodiment of the invention, these
have been expanded to include an extra argmﬁent consisting of a pointer to the csecinfo
structure on which to base any routing-table lookup. This extra argument is supplied from
either the sk_buff of the packet being routed for input or output.

02061554A1_t_>

BNSDOCID: <WO,

5

10

15

20

25

WO 02/061554

PCT/GB02/00419
30

Kemel-inserted routing-entries have a special status and are inserted with a wildcard
compartment number (-1L). In the context of per-compartment routing, they allow these
entries to be shared across all compartments. The main purpose of such a feature is to allow

" “incoming packéts to be routed properly up the stack. Any security-checks occur at a higher

level just prior to the sk_buff being delivered on a socket (or its sk_buff queue).

The net effect is that each compartment appears to have their individual routing tables which
are empty by default. Every compartment shares the use of system-wide network-interfaces.
In this exemplary embodiment of the invention, it is possible to restrict individual
compartments to a strict subset of the available network-interfaces. This is because each
network-interface is notionally in a compartment of its own (with its own routing table). In
fact, to respond to an ICMP-echo request, each individual interface can optionally be

configured with tagged routing-table entries to allow the per-protocol ICMP-socket to route
its output packet.

Other Subsystems

* UNIX Domain Sockets - Each UNIX domain socket is also tagged with the
csecinfo structure. As they also use sk_buffs to represent messages/data traveling between
connected sockets, many of the mechanisms used by the AF_INET domain described above

apply similarly. In addition, security-checks are also performed at every attempt to connect

to a peer.
* System V IPC - Each IPC-mechanism listed above is implemented using a
dedicated kernel structure that is similarly tagged with a csecinfo structure. Attempts to list,
add or remove messages to these constructs are subject to the same security checks as
individual sk_buffs. The security checks are dependent on the exact type of mechanism used.
* Processes/Threads - Since individual processes, i.e. task_structs are tagged with
the csecinfo structure, most process-related operations will be predicated on the value of the
process’s compartment number. In particular, process listing (via the /proc interface) is

controlled as such to achieve the effect of a per-compartment process-listing. Si gnal-delivery

02081554A1_)_>

BNSDOCID: <WO.

10

15

20

25

WO 02/061554 PCT/GB02/00419

31

is somewhat more complicated as there are issues to be considered in connection with delivery
of signals to parent processes which may have switched compartments - thus constituting a

1-bit covert channel.

System Defaults

Per-protocol Sockets - The Linux IP stack uses special, private per-protocol sockets to
implement various default networking behaviors such as ICMP-replies. These per-protocol
sockets are not bound to any user-level socket and are typically initialized with a wildcard

compartment number to enable the networking functions to behave normally.

Use of Compartment 0 as Unprivileged Default - The convention is to never insert any rules
which allow Compartment 0 any access to other compartments and network-resources. Inthis
way, the default behavior of initialized objects, or objects which bave not been properly

accounted for, will fall under a sensible and restricted default.

Default Kernel Threads - Various kernel threads may appear by default, e.g. kswapd, kflushd,
and kupdate to name but a few. These threads are also assigned a csecinfo structure per-
task_struct and their compartment numbers default to 0 to reflect their relatively unprivileged
status.

Sealing Compartments against Assumption of Root-identity - Individual compartments may
optionally be registered as ‘sealed” to protect against processes in that compartment from
successfully calling setuid(0) and friends, and also from executing any SUID-root binaries.
This is typically used for externally-accessible services which may in general be vulnerable
to buffer-overflow attacks leading to the execution of malicious code. If such services are
constrained to being initially run as a pseudo-user (non-root) and if the compartment it
executes in is sealed, then any attempt to assume the root-identity either by buffer-overflow
attacks and/or execution of foreign instructions will fail. Note that any existing processes

rupning as root will continue to do so.

The kernel modifications described previously serve to support the hosting of individual user-

02061554A1_1_>

WO 02/061554

PCT/GB02/00419

32

level services in a protected compartment. In addition to this, the layout, location and

conventions used in adding or removing services in this exemplary embodiment of the

invention will now be described.

Individual services are generally allocated a compartment each. However, what an end-user

5 perceives as a service may actually end up using several compartments. An example would

be the use of a compartment to host an externally-accessible Web-server with a narrow

interface to another compartment hosting a trusted gateway agent for the execution of CGI-

binaries in their own individual compartments. In this case, at least three compartments

would be needed:
10

and

each
15

one for the web-server processes;

one for the trusted gateway agent which executes CGI-binaries;

as many compartments as are needed to properly categorize' |
CGI binary, as the trusted gateway will fork/exec CGI-binaries
in their configured compartments.

Every compartment has a name and resides as a chroot-able environment under /compt.

Examples used in an exemplary embodiment of the present invention include:

Location

Description

/compt/admin

Admin HTTP-server

20 | /compt/omailout

Externally visible HTTP-server hosting

OpenMail server processes
/compt/omailin Internal compartment hosting OpenMail
SETrver processes
/compt/webl Extemally visible HTTP-server
/compt/weblmega Internal Trusted gateway agent for Webl's

CGI-binaries

BNSDOCID: <WO, 020681554A1_I_>

WO 02/061554

PCT/GB02/00419
33
In addition, the following subdirectories also exist:
1. /compt/etc/cac/bin - various scripts and command-line utilities
for managing compartments
2. /compt/etc/cac/rules - files containing rules for every registered
5 compartment on the system

3. Jcompt/etc/cac/encoding - configuration file for the cacc-utility,

e.g. compartment-name mappings

To support the generic starting/stopping of a compartment, each compartment has to conform

to a few basic requirements:

10 1. be chroot-able under its compartment location /compt/<name>
2. provide /compt/<name>/startup and /compt/<name>/shutdown
to start/stop the compartment
3. startup and shutdown scripts are responsible forinserting rules,
creating routing-tables, mounting filesystems (e.g. /proc)and
15 other per-service initialization steps

In general, if the compartment is to be externally visible, the processes in that compartment
should not run as root by default and the compartment should be sealed after initialization.
Sometimes this is not possible due to the nature of a legacy application being
integrated/ported, in which case it is desirable to remove as many capabilities as possible in

20 order to prevent the processes from escaping the chroot-jail, e.g. cap_mknod.

Due to the fact that the various administration scripts require access to each configured
compartment’s filesystem, and that these administration-scripts are called via the CGI-
interface of the administration Web-server, it is the case that these scripts cannot reside as a

normal compartment, i.e. under /compt/<name>.

25 In this exemplary embodiment of the invention, the approach taken is to enclose the chroot-
able environment of the administration scripts around every configured compartment, but to

BNSDOCID: <WO. 02061554A1_1_>

BNSDOCID: <WO

10

15

20

25

WO 02/061554 PCT/GB02/00419

34

ensure that the environment is a strict subset of the host’s filesystem. The natural choice is
to make the chroot-jail for the administration scripts to have its root at/compt. The resulting
structure is illustrated schematically in Figure 11 of the drawings.

Since compartments exist as chroot-ed environments under the /comp directory, application-
integration requires the usual techniques used for ensuring that they work in a chroot-ed
environment. A common technique is to prepare a cpio-archive of a minimally running
compartment, containing a minimal RPM-database of installed software. Itisusual to install
the desired application on top of this and, in the case of applications in the form of RPM’’s,
the following steps could be performed:

root@tlinux# chroot /compt/app1

root@thinux# rpm -install <RPM-package-filename>

root@tlinux# [Change configuration files as required, e.g. httpd.conf]
root@tlinux# [Create startup/shutdown scripts in /compt/app1]

The latter few steps may be integrated into the RPM-install phase. Reductions in disk-space
can be achieved by inspection: selectively uninstalling unused packages via the rpm- .
command. Additional entries in the compartment’s /dev-directory may be created ifrequired,
but/devis nomially left substantially bare in most cases. Further automation may be achieved
by providing a Web-based interface to the above-described process to supply all of the
necessary parameters for each type of application to be installed. No changes to the compiled
binaries are needed in general, unless it is required to install compartment-aware variants of

such applications.

A specific embodiment of one aspect of the present invention has been described in detail
above. However, a variety of different techniques may be used in the implementation of the
general concept of containment provided by the present invention. Itis obviously undesirable
to rewrite the operating system because it is necessary to be able to reuse as many user-level
applications as possible. This leaves various interposition techniques, some of which are

listed below, and can be categorized as either primarily operating at the user-level or kernel-
based.

02061554A1_|_>

BNSDOCID: <WO

10

15

20

WO 02/061554

PCT/GB02/00419

35

User-level techniques

The following outlines three common user-level techniques or mechanisms.

1. The strace() mechanism

This mechanism uses the functionality built into the system kernel to trace each system-call
of a chosen process. Using this mechanism, each system-call and its arguments can be
identified and the system-call is usually either allowed to proceed (sometimes with modified
arguments) or to fail according to a defined security policy.

This mechanism, while suitable for many applications, has a number of drawbacks. One of
these drawbacks becomes apparent in the case of the ‘runaway child’ problem, in which a
processAP which is being traced may fork a child Q which is scheduled to run before P returns .
from the fork() system-call. Since strace() works by attaching to processes using processID’s
(PID’s), and the PID of Q is not necessarily returned to P (and hence the tracer) before Q is
actually scheduled to run, there is a risk that Q would be allowed to execute some arbitrary
length of code before the tracer can be attached to it.

One solution to this problem is to check every system-call in the kernel for as-yet untraced
processes and to trap them there, for example, by forcefully ‘putting them to sleep’ so that the
tracer can eventually catch up with them. This solution would, however, require an additional

kemel component.

2. System-call wrapping

Another drawback of this mechanism occurs in the case that there exists a race-condition
where arguments to a traced system-call can be modified. The window where this occurs
happens between the tracer inspecting the set of arguments and actually allowing the system
call to proceed. A thread sharing the same address-space as the traced process can modify the

arguments in-memory during this interval.

02061554A1_I_>

BNSDOCID: <WO,

10

15

20

25

WO 02/061554 PCT/GB02/00419

36

Using this mechanism, system-calls can be wrapped using a dynamically linked shared library
that contains wrappers to system-calls that are linked against a process which is required to
betrace. These wrappers could contain call-outs to a module that makes a decision according
to a predefined security policy. o ‘

One drawback associated with this mechanism is that it may be easily subverted if the system-
calls that a process presumes to use are not unresolved external references and cannot be
linked by the dynamic loader. 1t is also possible to make a system-call that by-passes the
wrapper if the process performs the soft-interrupt itself with the correct registers set up like
a normal system-call. In this case, the kernel handles the call without passing through a
wrapper. In addition, in some cases, the dependence on the LD_PRELOAD environment
variable might also be an unacceptable weak link.

3. User-level authorization servers

This category includes authorization servers in user-space acting on data supplied via a private
channel to the kernel. Although very effective in many cases, this approach does have a
number of disadvantages, namely I) each system-call being checked incurs at least two
context-switches, making this solution relatively slow; ii) interrupt routines are more difficult
to bridge into user-space kernels due to the requirement that they do not sleep; and iii) a

kernel-level component is usually required to enforce mandatory tracing.

Despite the disadvantages of the user-level approaches outlined above, user-level techniques
to implement a trusted operating system in accordance with one aspect of the present
invention have the advantage of being relatively easy to develop and maintain, although in
some circumstances they may be insufficient in the implementation of system-wide mandatory

controls.

Ultimately, the aim of the present invention is to contain running applications, preferably
implemented by a series of mandatory access controls which cannot be overridden on a
discretionary basis by an agent that has not been authorized directly by the security
administrator. Implementing containment in a fashion that is transparent to running third-

02061554A1_[_>

BNSDOCID: <WO.

10

15

20

25

WO 02/061554

PCT/GB02/00419

37

party applications can be achieved by kernel-level access controls. By examining the possible
entry points and separating out the interactions of the kemnel subsystems within and against
cach other, it becomes possible to segment the view of the kernel and its resources with

respect to the running applications.

Such a scheme of segmentation is mandatory in nature due to its implementation within the
kernel itself - there is no discretionary aspect that can be overridden by a running application
unless it is made explicitly aware of the containment scheme and has been re-written to take

advantage of it.

Three examples of kernel-level approachesto implementing the present invention are outlined
below and illustrated in Figure 6 of the drawings. The first approach is based primarily on
patches to the kernel and its internal data structures. The second approach is entirely different
in that it does not require any kernel patches at all, instead being a dynamically loadable
kemnel module that operates by replacing selected system calls and possiblymodifying the run-
time kemel image. Both of these approaches require user-level configuration utilities
typically operating via a private channel into the kernel. The third approach represents a
compromise between the absolute controls offered by the first approach versus the

independence from kernel-source modifications offered by the second.

1. Source-level Kemel Modifications to Support Containment (V1)

This approach is implemented as a series of patches to standard operating system (in this case,
Linux) kernel sources. There is also a dynamically loadable kernel module that hosts the logic
required to maintain tables of rules an also acts as an interface between the kernel and user-
space configuration utilities. The kernel module is inserted early in the boot-sequence and
immediately enforces a restrictive security model in the absence of any defined rules. Prior
to this, the kernel enforces a limited security model designed to allow proper booting with all
processes being spawned in the default compartment 0 that is functional but essentially
useless for most purposes. Once the kernel module is loaded, the kernel switches from its
built-in model to the one in the module. Containment is achieved by tagging kernel resources

and partitioning access to these depending on the value of the tags and any rules which may

02061554A1_|_>

BNSDOCID: <WO

10

15

20

25

WO 02/061554

PCT/GB02/00419
38

have been defined.

Thus, each kernel resource required to be protected is extended with a tag indicating the
compartment that the resource belongs to (as described above). A compartment is represented
by a single word-sized value within the kernel, although more descriptive string names are
used by user-level configuration utilities. Examples of such resources include data-structures
describing:

* individual processes

* shared-memory segments

* semaphores, message queues

* sockets, network packets, network-interfaces and routing-table

enquiries

A complete list of modified data structures to support this approach to containment according
to an exemplary embodiment of the invention is given in Appendix 7.1 attached hereto. As
explained above, the assignment of the tag occurs largely through inheritance, with the iniz-
process initially being assigned to compartment 0. Any kemnel objects created by a process
inherit the current label of the running process. At appropriate points in the kernel, access-
control checks are performed through the use of hooks to a dynamically loadable security-
module that consults a table of rules indicating which compartments are allowed to access the

resources of another compartment. This occurs transparently to the running applications.

Each security check consults a table of rules. As described above, each rule has the form:

source -> destination method m [attr]
[netdev n]
where:
source/destination is one of:
COMPARTMENT (a named compartment)
HOST (a fixed IPv4 address)
NETWORK (an IPv4 subnet)

m: supported kernel mechanism, e.g. tcp, udp, msg (message queues), shm

02061554A1_|_>

BNSDOCID: <WQ

5

10

15

20

25

WO 02/061554

PCT/GB02/00419
39
(shared-memory), etc.
attr: attributes further qualifying the method m

n: a named network-interface if applicable, e.g. ethO

An example of such a rule which allows processes in the compartment named “WEB®” to

access shared-memory segments, for example using shmat/shmdt(), from the compartment
named “CGTI” would look like:

| COMPARTMENT:WEB -> COMPARTMENT:CGI METHOD shm

Present also are certain implicit rules, which allow some communications to take place within
a compartment, for example, a process might be allowed to see the process identifiers of
processes residing in the same compartment. This allows a bare-minimum of functionality
within an otherwise unconfigured compartment. An exception is compartment 0, which is
relatively unprivileged and where there are more restrictions applied. Compartment 0 is

typically used to host kernel-level threads (such as the swapper).

In the absence of a rule explicitly allowing a cross-compartment access 10 take place, all such-
attempts fail. The net effect of the rules is to enforce mandatory segmentation across.
individual compartments, except for those which have been explicitly allowed to access

another compartment’s resources.

The rules are directional in nature, with the effect that they match the connect/accept behavior
of TCP socket connections. Consider a rule used to specify allowable incoming HTTP

connections of the form:

HOST* -> COMPARTMENT X METHOD TCP PORT 80

This rule specifies that only incoming TCP connections on port 80 are to be allowed, but not
outgoing connections (see Figure 7). The directionality of the rules permits the reverse flow
of packets to occur in order to correctly establish the incoming connection without allowing

outgoing connections to take place.

__ 02061554A1_I_>

BNSDOCID: <WO.

10

15

20

25

WO 02/061554

PCT/GB02/00419
40

The approach described above has a number of advantages. For example, it provides
complete control over each supported subsystem and the ability to compile out unsupported
ones, for example, hardware-driven card-to-card transfers. Further, this approach provides
relatively comprehensive namespace partitioning, without the need to change user-space
commands such as ps, netstat, route, ipcs etc. Depending on the compartment that a process
is currently in, the list of visible identifiers changes according to what the rules specify.
Examples of namespaces include Process-table via/proc, SysV IPC resource-identifiers,

Active, closed and listening sockets (all domains), and Routing table entries.

Another advantage of this approach is the synchronous state with respect to the kernel and its
running processes. In view of the fact that the scalar tag is attached to the various kernel-
resources, no complete lifetime tracking needs to be done which is a big advantage when

considering the issue of keeping the patches up to date as it requires a less in-depth

" understanding of where kernel variables are created/consumed. Further, fewer source changes

need to be made as the inheritance of security tags happens automatically through the usual
C assignment-operator (=) or through memcpy(), instead of having to be explicitly specified
through the use of #ifdefs and clone-routines.

In addition, there is no need to recursively enumerate kernel resources at the point of
activation as such accounting is performed the moment the kemnel starts. Further, this
approach provides a relatively speedy performance (about 1 - 2 % of optimal) due to the
relatively small number of source changes to be made. Depending on the intended use of the
system, the inten_ml hash-tables can be configured in such a way that the inserted rules are on
average 1-level deep within each hash-bucket - this makes the rule-lookup routines behave
in the order of O(1).

However, despite the numerous advantages, this approach does require source modifications
to the kernel, and the patches need to be updated as new kernel revisions become available.
Further, proprietary device-drivers distributed as modules cannot be used due to possible

structure-size differences.

2. System-call Replacement via Dynamically Loadable Kernel Modules (V2)

02061554A1_|_>

BNSDOCID: <WOQ.

10

15

20

25

WO 02/061554 PCT/GB02/00419

41

This approach involves implementing containment in the form of a dynamically loadable
kernel module and represents an approach intended to recreate the functionality oftheSource-

level Kernel Modification approach outlined above, without needing to modify kernel sources.

In this approach, the module replaces selected system-calls by overwriting the
sys_call_table[] array and also registers itself as a netfilter module in order to intercept
incoming/outgoing network packets. The module maintains process ID (PID) driven internal
state-tables which reflect the resources claimed by each running process on the system, and
which are updated at appropriate points in each intercepted system call. These tables may also
contain security attributes on either a per-process or per-resource basis depending on the

desired implementation.

The rule format and syntax for this approach is substantially as described with regard to the
Source-level Kernel Modification approach outlined above, and behaves in a similar manner.
Segmentation occurs through the partitioning of the namespaces at the system-call layer.
Access to kernel resources via the original system-calls becomes conditional upon security

checks performed prior to making the actual system call.

All system-call replacements have a characteristic pre/actual/post form to reflect the

conditional nature of how system-calls are handled in this approach.

Thus, this approach has the advantage that no kernel modifications are required, although
knowledge of the kernel internals is needed. Further, the categorization of bugs becomes

easier with the ability to run the system while the security module is temporarily disabled.

There are also a number of disadvantages and/or issues to be considered in connection with
this approach. Firstly, maintaining true synchronous state with respect to the running
processes is difficult for various reasons that are mostly due to the lack of a comprehensive
kernel event notification mechanism. For example, there is no formal mechanism for catching
the situation where processes exit abnormally, e.g. due to SIGSEGV, SIGBUS, etc. One
proposed solution to this problem involves a small source code modification to do_exit() to

provide a callback to catch such cases. In one exemplary embodiment, a kernel-level reaper

02061554A1_I_>

WO 02/061554 PCT/GB02/00419
42

thread may be used to monitor the global tasklist and perform garbage collecting on dead
PID’s. This introduces a small window of insecurity which is somewhat offset by the factthat
PID’s cycle upwards and the possibility of being reassigned a previously used PID within a
single cycle of the reaper thread is relatively small.

5 With regard to the runaway-child problem described above, fork/vfork/clone does not i‘etum
with the child’s PID until possibly after the éhild is scheduled to run. If the module
implementation creates PID-driven state-tables, this means that the child may invoke system-
calls prior to a state-entry being created for it. The same problem exists in the strace
command (as described above) which cannot properly follow forked children due to the need

10 to attach to child processes. One possible solution to this problem is to intercept all system-
calls with pre-conditional checks, but this solution is relatively slow and ineffective in some

circumstances.

Another possible solution is relatively complex, and illustrated in Appendix 7.2 attached
hereto.

15 1. fork() - the return address on the stack of the parent is modified prior to calling the .
real fork()-system call by poking the stack in the user-space. This translates to the child
inheriting the modified return address. The modified return address is set to point to 5 bytes
prior to its original value which causes the fork() system call to be called again by the child
as its first action. The system then intercepts this and creates the necessary state entries. The

20 parent has the saved return-address restored just prior to returning from fork() and so proceeds
as normal. (Note that 5 bytes is exactly the length of the instruction for a form of the IA-32

far call. Other variants may be wrapped using LD_PRELOAD and a syscall wrapper that has
the desired 5-byte form).

2. clone() - the method used for a forked child (as described above) is not suitable for
25 handling a cloned child due to the different way the stack is set up. The proposed solution

instead 1s to:

a. . Call brk() on behalf of the user-process to allocate a small 256-byte
chunk of memory;

BNSDOCID: <WO 02061554A1_|_>

BNSDOCID: <WQ

WO 02/061554 PCT/GB02/00419

10

15

20

25

43

b. Copy a prepared chunk of executable code into this newly-allocated
memory. This code will call a designated system-call before
proceeding as normal for a cloned child;

c. Modify the stack of the user-process so that it executes this newly-
prepared chunk of code instead of the original routine supplied in the
call to clone();

d. Save the original pointer to the routine supplied by the user-process to

clone.

When the cloned child first executes, it will run the prepared chunk of code that makes a
system-call which returns the pointer to the original routine that it was supposed to have
executed. The child is trapped at this point and state-entries are created for it. The cloned
child then executes the original routine as normal. (See Appendix 7.4 attached hereto).

In both cases, the child is forcibly made to call down to the kernel-module where it can be
trapped.

Another possible solution is to change the ret_from_fork() routine in the kernel to provide a
callback each time a child is created. Alternatively, the do_fork() kernel function which
implements fork/viork/clone could be modified.

Tracking close-on-exec behavior is also difficult in this implementation without intimate

knowledge of the filesystem-related structures within each process structure.

Another issue to be considered in connection with this approach is that the module should
typically be loaded very early in the boot sequence to start monitoring kernel resources as
soon as possible because post-enumerating such resources becomes progressively more
difficult as the boot sequence advances. It should also be noted that the process of checking
for the validity of system-call arguments in this approach is shifted to the kemel module
instead of the original system-calls. As such, because the original kemel is not modified,
additional overhead is introduced with this approach. Similarly, maintaining what is

essentially replicated state information apart from the kernel adds overhead in terms of

02061554A1_I_>

BNSDOCID: <WO

WO 02/061554 PCT/GB02/00419

10

15

20

25

44

memory usage and processor cycles.

Yet another disadvantage is the loss of per-compartment routing and the features that depend
on it, namely virtualized ARP caches and the ability to segment back-end network access
using routes. This is because the routing code is run unmodified without tagged data
structures. Finally, itis considered very difficult, if not imposéible, to provide a single binary
module that caters to all configurations. The size and layout of data-members within a
structure depend on the config-options in that particular kernel-build. For example, specifying
that netfilter be compiled causes some networking-related data structures to change in size and

layout.

There are a number of issues to be considered in connection with the deployment of the
dynamically loadable kernel module. Because the size of certain kemel data structures
depends on the actual configuration options determined at build-time, i.e. the number of data
members can vary depending on what functionality has been selected to be compiled in the
kernel, the need to match the module to the kernel is essential. Thus, modules can either be .
built against known kernels, in which case, the sources and the configuration options
(represented by a config-file) is readily available, or modules can be built at the point of
installation, in which case the sources to the module would have to be shipped to the point of

installation.

3. Hybrid System-call Replacement with Support from Kernel-hased Changes

Referring to Figure 8 of the drawings, there is illustrated schematically some of the options
available for the construction of ahybrid containment operating system which combines some
of the features of the modified kernel-based approach (V1) and the system-call replacement
approach (V2) as described above.

In terms of maintaining state relative to the running kemel, the V1 approach is much more
closely in step with the actual operation of the kernel compared to V2, which remains slightly
out of step due to the lack of proper notification mechanisms and the need for garbage

collecting. The state information in V1 is synchronous with respect to the kernel proper, and

02081554A1_|_>

BNSDOCID: <WO,

WO 02/061554 PCT/GB02/00419

10

15

20

25

45

V2 is asynchronous. Synchrony is determined by whether or not the internal state-tables are
updated in lock-step fashion with changes in the actual kernel state, typically within the same
section of code bounded by the acquisition of synchronization primitives. The need for
synchronyisillustrated in Figure 9 of the drawings, where changes to kernel state arising from

an embedded source need to be reflected in the replicated state at the interposition layer.

Referring back to Figure 8 of the drawings, the determination of relative advantages in
connection with the V1 and V2 approaches works on a sliding scale between the position of
synchronous state typified by the V1 approach and the asynchronous one offered by the V2
approach, depending on how aggressively a developer wishes to modify kemel sources in
order to achieve a near-synchronous state. Figure 8 illustrates three points at which changes

to the V2 approach might provide significant advantages at the relatively slight expense of

- kernel source code changes.

1. do_exit() - a 5-line change in the do_exiz() kernel function would enable a callback
to be provided to catch changes to the global tasklist as a result of processes terminating

abnormally. Such a change does not require knowledge of how the process termination is

- handled, but an understanding of where the control paths lie.

2. Fork/vfork/clone - another 5-line change in the do_fork kernel function would
allow the proper notification of child PID’s before they can be scheduled to run. An
alternative is to modify ret_from _forkO but this is architecture-dependent. Neither of these
options requires knowledge of process setup, just an awareness of the nature of PID creation
and the locks surrounding the PID-related structures.

3. Interrupts, TCP timers, etc. - this category covers all operations carried out
asynchronously in the kernel as a result of either a hard/soft IRQ, tasklets, internal timers or
any execution context not traceable to a user-process. An example is the TCP timewait hash
buckets used to maintain sockets that have been closed, but are yet to disappear completely.
The hashtables are not publicly exported and changes to them cannot be tracked, as there are
no formal APT’s for callbacks. Ifit is required to perform accounting on a per-packet basis

(which is amajor advantage in the V1 approach and from which several features are derived),

02061554A1_|_>

BNSDOCID: <WO,

WO 02/061554 PCT/GB02/00419

i0

15

20

25

46

then this category of changes to the kernel sources is required. However, in order to carry out
those (relatively extensive) changes, an in-depth knowledge of the inner workings of the

subsystems involved.

One of the most important applications of the present invention is the provisiori of a secure
web server platform with support for the contained execution of arbitrary CGI-binaries and
with any non-HTTP related processing (e.g. Java servlets) being partitioned into separate
compartments, each with the bare minimum of rules required for their operation. Thisis a

more specific configuration than the general scenario of:

1. Secure gateway systems which host a variety of services, such as DNS, Sendmail,
etc. Containment or compartmentalization in such systems could be used to reduce the
potential for conflict between services and to control the visibility of back-end hosts on a per-

service basis.

2. Clustered front-ends (typically HTTP) to multi-tiered back-ends, including
intermediate application servers. Compartmentalization in such systems has the desired effect

of factoring out as much code as possible that is directly accessible by external clients.

In summary, the basic principle behind the present invention is to reduce the size and
complexity of any externally accessible code to a minimum, which restricts the scope by
which an actual security breach may occur. The narrowest of interfaces possible are specified
between the various functional components which are grouped into individual compartments
by using the most specific rule possible and/or by taking advantage of the directionality of the
rules.

Returning now to Figure 2 of the drawings, there is illustrated a web-server platform which
is configured based on V1 as the chosen approach. As described above, each web-server is
placed in its own compartment. The MCGA daemon handles CGI execution requests and is
placed in its own compartment. There are additional compartments for administration
purposes as well. Also shown is the administration CGI utilities making use of user-level
command line utilities to configure the kernel by the addition/deletion of rules and the setting

02081554A1_|_>

BNSDOCID: <WO

WO 02/061554 PCT/GB02/00419

10

15

20

25

47

of process labels. These utilities operate via a privileged device-driver interface. In the

kernel, each subsystem contains call-outs to a custom security module that operates on rules

and configuration information set earlier. User-processes that make system calls will

ultimately go through the security checks present in each subsystem and the corresponding
data is manipulated and tagged appropriately.

The following description is intended to illustrate how the present invention could be used to
compartmentalize a setup comprising an externally facing Apache Web-server configured to
delegate the handling of Java servlets or the serving of JSP files to two separate instances
Jakarta/Tomcat, each running in its own compartment. By default, each compartment uses

a chroot-ed filesystem so as not to interfere with the other compartments.

Figure 10 of the drawings illustrates schematically the Apache processes residing in one
compartment (WEB). This compartment is externally accessible using the rule:

HOST* -> COMPARTMENT WEB
METHOD TCP PORT 80 NETDEYV eth0

The presence of the NETDEV component in the rule specifies the network-interfaces which
Apache is allowed to use. This is useful for restricting Apache to using only the external
interface on dual/multi-homed gateway systems. This is intended to prevent a compromised
instance of Apache being used to launch attacks on back-end networks through internally
facing network interfaces. The WEB compartment is allowed to communicate to two separate
instances of Jakarta/Tomcat (TOMCAT1 and TOMCAT?2) via two rules which take the form:

COMPARTMENT:WEB -> COMPARTMENT:TOMCAT1
METHOD TCP PORT 8007

COMPARTMENT:WEB -> COMPARTMENT TOMCAT2
METHOD TCP PORT 8008

The servlets in TOMCAT]1 are allowed to access a back-end host called Serverl using this

02061554A1_1_>

BNSDOCID: <WOQ.

WO 02/061554 PCT/GB02/00419

10

15

20

25

48

rule:

COMPARTMENT:TOMCAT1 ->HOST:SERVER1
METHOD TCP

However, TOMCAT 2 is not allowed to access any back-end hosts at all - which is reflected
by the absence of any additional rules. The kemel will deny any such attempt from
TOMCAT?2. This allows one to selectively alter the view of a back-end network depending
on which services are being hosted, and to restrict the visibility of back-end hosts on a per-

compartment basis.

It is worth noting that the above four rules are all that is needed for this exemplary
configuration. In the absence of any other rules, the servlets executing in the Java VM cannot
initiate outgoing connections; in particular, it cannot be used to launch attacks on the internal
back-end network on interface ethl. In addition, it may not access resources from other
compartments (e.g. shared-memory segments, UNIX-domain sockets, etc.), nor be reached
directlybyremotehosts. In this case, mandatory restrictions have been placed on the behavior
of Apache and Jakarta/Tomcat without recompiling or modifying their sources.

An example of application integration will now be described with reference to OpenMail 6.0.
The OpenMail 6.0 distribution for Linux consists of a large 160Mb+ archive of some
unspecified format, and an install-script ominstall. To install OpenMail, it is first necessary

to chroot to an allocated bare-bones inner-compartment:

root@tlinux# chroot /compt/omailin

root@tlinux# ominstall

root@timud [Wait for OpenMiail to install naturally]

root@tlinux# [Do additional configuration if required, e.g. set up mailnodes]

Since OpenMail 6.0 has a Web-based interface which is also required to be installed, another
bare-bones compartment is allocated (omailout) and an Apache HT TP-server is installed o
handle the HTTP queries:

02061554A1_|_>

BNSDOCID: <WO,

WO 02/061554 PCT/GB02/00419

10

15

20

49
root@tlinux# chroot /compt/omailout
root@tlimix# rpm --install <apache-RPM-filoename>
root@tlinux# Configure Apache’s httpd.conf to handle CGI-requests as required by

OpenMail’s installation instructions]

At this point, it is also necessary to install the CGI-binaries which come with OpenMail 6.0
so that they can be accessed by the Apache HTTP-server. This can be done by one of two

methods:

* Install OpenMail again in omailout and rernove unnecessary portions, €.g. server-processes;
or

* Copy the OpenMail CGI-binaries from omailin, taking care to preserve permissions and
directory structure.

In either case, the CGI-binaries typically are placed in the cgi-bin directory of the Apache
Web-server. If disk-space is not an issue, the former approach is more brute-force and works
well. The latter method can be used if it is necessary to be sure of exactly which binaries are
to be placed in the externally-facing omailout compartment. Finally, both compartments can
be started: '

root@tlinux# comp_start omailout omailin

It may be possible that IP fragments are received with different originating compartment
numbers. In such a case, the system may include means for disallowing fragment re-assembly
to proceed with fragments of differing compartment numbers.

Support for various other network protocols zhay be included, e.g. IPX/SPX, etc.

It is envisaged that a more comprehensive method for filesystem protection than chroot-jails
might be used.

Referring to Figure 13 of the drawings, the operation of an exemplary embodiment of the

02061554A1_|_>

BNSDOCID: <WO.

. . gateway system 600 is hosting multiple types of services Service0, S_erﬁqgl, , ServiceN

10

15

20

25

WO 02/061554 PCT/GB02/00419

50

invention of our first co-pending International Application is illustrated schematically. A

gateway system 600 (connected to both an internal and external network) is shown. The

>

each of which is connected to some specified back-end host, Host0, Hostl,...... HostX,'ILIostN ,
to perform its function, e.g. retrieve records from a back-end database. Many back-end hosts
may be present on an internal network at any one time (not all of which are intended to be
accessible by the same set of services). It is essential that, if these server-processes are
compromised, they should not be able to be used to probe other back-end hosts not originally
intended to be used by the services. The invention of our first co-pending International
Application aspect of the present invention is intended to limit the damage an attacker can do
by restricting the visibility of hosts on the same network.

In Figure 13, Service0 and Servicel are only allowed to access the network Subnetl through
the network-interface ethO. Therefore, attempts to access Host0/Host1 succeed because they
are Subnet1, but attempts to access Subnet2 via ethl fail. Further, ServiceN is allowed to
access only HostX on ethl. Thus any attempt by ServiceN to access HostN fails, even if
HostN is on the same subnet as HostX, and any attempt by ServiceN to access any host on
Subnet] fails.

The restrictions can be specified (by rules or routing-tables) by subnet or by specific host,
which in turn may also be qualified by a specific subnet.

Referring to Figure 14 of the drawings, the operation of an operating system according to an
exemplary embodiment of the fourth aspect of the present invention is illustrated
schematically. The main preferred features of an exemplary embodiment of this aspect of the

invention are:

1. Maodifications to the source code of the operating system in the areas
in which transitions to root are possible. Hooks are added to these points so that, at run-time,
these call out to functions that either allow or deny the transition to take place.

2. Modifications to the source code of the operating system to mark each

running process with a tag. As described above, processes which are spawned inherit their

) 02061554A1_1_>

BNSDOCID: <WO

WO 02/061554 PCT/GB02/00419

10

15

20

51

tag from their parent process. Special privileged programs can launch an external program
with a tag different from its own (the means by which the system is populated with processes
with different tags). _

3. A mechanism by which a configuration-utility can specify to the
operating system at run-time which processes associated with a particular tag are to be marked
as “sealed”.

4, Configuration files describing data to be passed to the configuration-

utility described above.

The present invention thus provides a trusted operating system, particularly Linux-based, in
which the functionality is largely provided at the kernel level with a path-based specification
of rules which are not accessed when files or programs are accessed. This is achieved by
inferring any administrative privilege on running processes rather than on programs or files
stored on disk. Such privileges are conferred by the inheritance of an administrative tag or
label upon activation and thus there is no need to subsequently decode streams or packets for
embedded security attributes, since streams or packets are not re-routed along different paths

according to their security attributes.

Linux functionality is accessible without the need for trusted applications in user space and
there is no requirement to upgrade or downgrade or otherwise modify security levels on

running programs.

Embodiments of the present invention have been described above by way of examples only
and it will be apparent to a person skilled in the art that modifications and variations can be
made to the described embodiments without departing from the scope of the invention as

defined by the appended claims.

______ 02061554A1_|_>

BNSDOCID: <WO,

WO 02/061554 PCT/GB02/00419

10

15

20

25

52

Claims

1) An operating system for supporting a plurality of applications, wherein at least
some of said applications are provided with a label or tag, each label or tag being indicative
of a logically protected computing compartment of the system, each application having the
same label or tag belonging to the same compartment, the operating systein defining one or
more communications paths between said compartments, and preventing communication

between compartments where a communication path therebetween is not defined.

2) - An operating system as claimed in claim 1, in which the operating system
comprises a kernel defining said one or more communications paths between said
compartments, and preventing said communication between compartments where a

communication path therebetween is not defined.

3) - An operating system for supporting a plurality of applications, the operating
system further comprising a plurality of access control rules and enforced by a kernel of the
operating system, the access control rules defining the only communication interfaces or paths
between selected applications .

4) An operating system as claimed in claim 3, in which said access control rules can

be added from user space.

5) An operating system as claimed in claim 3, in which said access control rules
define the only communication interfaces or paths between selected applications local to said

operating system.

6) An operating system as claimed in claims 3 or 5, in which said access control rules
define the only communication interfaces or paths between selected applications remote from

said operating system.

7) An operating system as claimed in claim 3, wherein in at least some of said

applications are provided with a label or tag, each label or tag being indicative of a

02061554A1_|_>

BNSDOCID: <WO,

WO 02/061554 PCT/GB02/00419 :

10

15

20

53

compartment of the system.

8) An operating system as claimed in claim 7, in which the system performs
mandatory security checks to ensure that processes from one compartment cannot interfere

with processes from another compartment.

9) An operating system as claimed in claim 7, comprising a file system, wherein said
file system is at least partly divided into sections, each section being a restricted sub-set of the

main file system and associated with a respective compartment.

10) An operating system as claimed in claim 9, wherein applications running in each

compartment only have access to the associated section of the file system.

11) An operating system as claimed in claim 10, which prevents a process from
transistioning to root from within its compartment, such that said restricted sub-set cannot be
escaped.

12) An operating system as claimed in claim 10 or claim 11, arranged to make

selective files within a restricted sub-set immutable.

13) An operating system as claimed in claim 3, wherein said one or more

communication paths are governed by one or more rules.

14) An operating system as claimed in claim 7, wherein said one or more

communication interfaces or paths are governed by one or more rules.

15) An operating system as claimed in claim 14, wherein said rules are defined and

added from user space.

16) An operating system as claimed in claim 14 or 15, wherein said rules are added

on a per-compartment basis.

02061554A1_|_>

BNSDOCID: <WO,

WO 02/061554 PCT/GB02/00419

190

15

20

54

17) An operating system as claimed in claim 14, wherein said rules specify the allowed

access between a compartment and other compartments or host, and are enforced by the kemel

of the operating system.

18) An operating system as claimed in claim 14, in which rules defined for the
operating system can be added.

19) An operating system as claimed in claim 14, in which rules defined for the
operating system can be deleted.

20) An operating system as claimed in claim 14, in which rules defined for the
operating system can be listed.

21) An operating system as claimed in claim 14, wherein said rules are stored in a

kemnel-level database.

22) An operating system as claimed in claim 21, wherein said kernel-level database
is made up of two hash tables, one of the tables being keyed on the rule source address details
and the other being keyed on the rule destination address details.

23) An operating system for supporting a plurality of applications, said operating
system comprising a database in which is stored a plurality of rules defining permitted
communications paths between said applications, said rules being stored in the form of at least
two encoded tables, the first table being keyed on the rule source details and the second table
being keyed on the rule destination details, the system further comprising a portion, which,
in response to a system call, checks at least one of said tables for the presence of a rule
defining the required communication path and for permitting said system call to proceed only

in the event that said required communication path is defined.

24) An operating system as claimed in claim 23, wherein said encoded tables include

at least one hash table.

02061564A1_|_>

BNSDOCID: <WO

7

WO 02/061554 PCT/GB02/00419

10

15

55

25) An operating system for supporting a plurality of applications, the operating
system:
~ providing at least some of said applications with a tag or label, said tags or labels

being indicative of whether or not an application is permitte& to transiﬁoﬁ tb root in responée
to a request,

identifying such a request,

determining from its tag or label whether or not an application is permitted to
transition to root, and

permitting or denying said transition accordingly.

26) An operating system comprising a kernel for storing a rule base consisting of one
or more rules defining permitted communication paths between system objects, and a user-

operable interface for adding, deleting and/or listing such rules.

27) An operating system as claimed in claim 26, comprising a kemel device driver
which provides two entry points to the kernel of the operating system, the first entry point
being for adding and/or deleting rules, and the second entry point being for reading a list of
rules generated by the kernel.

02061554A1_|_>

BNSDOCID: <WO

WO 02/061554

PCT/GB02/00419

Exanqﬂeaudhﬂzchneibrrnuhrsanncelunnnu;anam
qpenuungsys&nn‘wﬁhfheconunnnnnn;nopany

12\:‘ FIG. 1
User
External Compariments

102

166 —__

110 100
A typical secure Web-server configuration on Trusted Linux
with CGI-sandboxing
FIG. 2

02061554A1_1_>

BEST AVAILABLE COPY

WO 02/061554 PCT/GB02/00419 g .

-2/9-
struct csec info (
y unsigned long sl ;
struct sock (
#lfdef CASPER " ent "y
struct csecinfo csi : /* contains compartment number
;#endlf /* CASPER */
Example of modified datatype
FIG. 3
User
User process/thread
Kemel :
struct task_struct AF_INET sockets are represented by a
struct sock variable each time they are
AF_INET created
I
struct sock Packet delivery for TCP, UDP et al. vm
 § tep rev(), udp_rov(),
¢ sk buﬁ'packetstruvelup/downﬁlesmk
struct sk_buff
' B | ip_input() - handle incoming packets
struct net device 1p—oulput0 handle outgoing packets
gmtouansmxsmunbyﬂwnawoﬂ;
ver

Major networking datatypes in Linux IP networking
FIG. 4

BNSDOCID: <WO, 02061554A1_1_>

PCT/GB02/00419

WO 02/061554

-3/9-

¢ D
Sury10M39U-4] J0J SISQUISW-BIBP OFuI0398 Jonns Jo uanesedory

ySOIIp jaugons 391ASD 33U o8
(Pyuatyur om5208) — B >
e
Jnq ¥ onns Inq ¥ 30n08
W.ﬂ\u‘ 4/ & (ehduos-yrur
. U ddDL
(wo- Qs /
PoyaquE ojupaos) G | A | eseesenes ppy—
._l_ . ™ Jofix] 195008
'-o (O1oxpz08
Aggﬂagv...i\ gﬂgg P JORTE NN g
- e .

02061554A1_1_>

WO 02/061554 PCT/GB02/00419

-4/9-
process 1st approach: Kernel-source
patches
v Modified Linux Kernel
+
v Extensive Patches
process 2nd approach: kernel module
overrides system-calls
v Interposition Layer
(dynamically loadable kernel module)
v "Standard Limus Kernel
(no patches)
@ 3rd approach. @el module +
. 4

Three approaches to building containment into the Linux kernel

FIG. 6
tcp/80
> Compartment X
(Apache)
« disallowed X

Only incoming TCP connections allowed
FIG. 7

BNSDOCID: <WO, 02061554A1_|_>

8§ DI
SO 2df10103d JuoTINTEIN0D PLIGAY B JO TORONNSUOD a7 10f S[qereAs suondo Jo wnxsedg

?ﬁueg:s&,eégmsaﬁaé oqms SNOUONIUAS

("))
= —>

(21 ADESDIS) 0A00%3 con "040 SIS
| eworomazmsos 0L ‘midnzzzmy

-5/9-

Ixa op
A 1A

XUy paysnyy, ofumrojqissod - A ¥NOYT paIsnI], Xnoyy pAsI],
I o0 _. _

JA308EGM Sw28A8qNS [RIAGS
SUORBOGIRONY [oWaY ON , 0} STONEIYIPONT [OWIY

02081554A1_|_>

BNSDOCID: <WO.

WO 02/061554 PCT/GB02/00419 %

-6/9-
\I:Z. ylétzrposmon Security Process
| Pro
Vanilla Kernel
Process
- synchronous update

n

The need to update replicated kernel state in synchrony

FIG. 9
Gateway Platform
Server
eth0 | 1
tcp/B0 |
tcp/8008] TOMCAT 2 |#) N
(Denied)
Configuration of Apache and Tomcat Java VMs
FIG. 10
Entire Host Filesystem J-host root direct
|
|
/compt-location of all compartments /I!llg
letc
e ' /dev
Chroot for Admin | HT TP Chroot for Web 1 tem files
/compt/web 1

Layered chroot-ed environments in Trusted Linux
FIG. 11

BNSDOCID: <WO 02061554A1_1_>

y WO 02/061554 PCT/GB02/00419

-7/9-

(PROCESS IN
COMPARTMENT)
P

FIG. 12

BNSDOCID: <WQ 02061554A1_1_>

2

A

WO 02/061554 PCT/GB02/00419
-8/9-
600
Gateway —f
Subnet 1
Service 0 ' Host 0
Eth 0
Service 1 Host 1

Subnet 2 |
Host X
.7 Service N Ethl =
X == Host N
FIG. 13
Internet

=

BNSDOCID: <WO, 02061554A1_I_>

PCT/GB02/00419

WO 02/061554

-9/9-

¥1 "DId
o
89X (4
ON I ON/SOX
1001 0} GAHIMS 03 POMOTTY B8], Supnor Borsiad Alu_ H
a 11:02) 18
eumnox pareal a0 Lus YO wresdord j001-pingas
JusmoFeneur a[qe], 8 09X0 YO (I~3o8(] Suruuni 308 0) JdmWaRY
wysks Sugsiado A
%8p uoneINdgua) \v_ Aymn vopwndguo) (2 3m) ssa001g (1 8m) ssa001g

02061554A1_{_>

BNSDOCID: <WO,

Incernaional Application No

PCT/GB 02/00419

INTERNATIONAL SEARCH REPORT

A. CLA;»SIFICATION OF SUBJECT MATTER

IPC G06F1/00

According to {nternational Patent Classlflcatio}l (IPC) orto both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the exient that such documents are included in the fields searched

Elactronic data base consulied during the International search (name of data base and, where practical, search ierms used)

PAJ, WPI Data, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Chtation of document, with indication, where appropriate, of the relevant passages Relevant to E:la;im No.

X SERGE E. HALLYN, PHIL KEARNS:
Type Enforcement for Linux"
INTERNET ARTICLE, ‘Online!
14 October 2000 (2000-10-14), XP002197019
This paper was originally published in the
Proceedings of the 4th Annual Linux
Showcase and Conference, Atlanta October
10-14, 2000 e

Retrieved from the Internet:
<URL:http://www.usenix.org/publications/1i
brary/proceedings/als2000/full_papers/hall
yn/hallyn_html1/> ‘retrieved on 2002-04-22!
abstract

page 1, paragraph 2 - paragraph 3

page 2, paragraph 2 - paragraph 3

page 3, paragraph- 3

page 5, paragraph 1

page 8, paragraph 5

"Domain and 1-27

—/—

D(] Furiher documents are listed in the continuation of box C. D . Patent family members are listed in annex.

° Spedial categories of cited documents :

P g s *T* later document published afier the international filing date
or priority date and not in conflict with the applicalion but
cited to understand the principle or theoty underlying the
invention

X document of particular refevance; the ¢laimed invention
cannot be considered novel or cannot be considered to

A document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document bul published on or after the international
filing date

BNSDOCID: <WO

L" documem which may throw doubls on priority claim(s) or
which Is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring fo an oral disclosure, use, exhibition or
other means

'P document published prior to the internafional filing date but
later than the priority date claimed

involve an inventive step when the document is taken alone

Y document of particutar relevance; the claimed invention
- cannot be considered 1o involve an inventive step when the
document is combined with one or more other such docu—
ments, such combination being cbvious 1o a person skilled
in the art.

*&' document member of the same patent family

Date of the actual comnpletion of the international search

24 April 2002

Date of mailing of the international search report

21/05/2002

Name and maiiing address of the ISA

European Patent Office, P.B. 5818 Patenilaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31~70) 340-3016

Authorized ofticer

Kerschbaumer, J

Form PCT/ISA/210 (second sheet) (July 1992)

02061554A1_|_>

BNSDOCID: <WO

INTERNATIONAL SEARCH REPORT

INteadonal Appllcatign No
PCT/GB 02/00419

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ©

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

X

PETER LOSCOCCO;" STEPHENESMALLEY" R
"Integrating F1ex1b1e Support for Security
Policies into the Linux Operating System"
INTERNET ARTICLE, ‘Online!

2 January 2001 (2001-01-02), XP002197020
Retrieved from the Internet:
<URL:www.nsa.gov/selinux (mirror:
http://the.wiretapped.net/security/operati
ng—systems/se]1nux/papers/s]1nux 200101020
953.pdf)> ‘retrieved on 2002—04 221 -
abstract

page 3 —page 5

ANONYMOUS: "Secure Execution
Environments, Internet Safety Through
Type-Enforcing Firewalls”

INTERNET ARTICLE, ‘Online!

15 August 2000 (2000-08-15), XP002197021
Retrieved from the Internet:
<URL:http://www.pgp.com/research/nailabs/s
ecure-execution/internet-safety.asp>
‘retrieved on 2002-04-22!

abstract

page 2; figures 1,2

DANIEL SENIE: "Using the SOCK_PACKET
mechanism in Linux To Gain Complete
Control of an Ethernet Interface"

INTERNET ARTICLE, ‘Online! - -

18 February 1999 (1999-02-18), XP002197022
Retrieved from the Internet:
<URL:http://www.senie.com/dan/technology/s
ock_packet.html> ‘retrieved on 2002-04-22!
abstract

page 2, paragraph 3

1-27

1-5,7-27

1-27

Form PCT/ISA/210 (continuation of second sheet) (July 1892)

02081554A1_|_>

THIS PAGE BLANK wert0)

	2007-03-05 Foreign Reference

